2065 “红色病毒”问题

关键字: 代码分享 杭电100题

问题描述

Problem Description

医学界发现的新病毒因其蔓延速度和Internet上传播的"红色病毒"不相上下,被称为"红色病毒",经研究发现,该病毒及其变种的DNA的一条单链中,胞嘧啶,腺嘧啶均是成对出现的。

现在有一长度为N的字符串,满足一下条件:

  1. 字符串仅由A,B,C,D四个字母组成;
  2. A出现偶数次(也可以不出现);
  3. C出现偶数次(也可以不出现);

计算满足条件的字符串个数.

当N=2时,所有满足条件的字符串有如下6个:BB,BD,DB,DD,AA,CC.

由于这个数据肯能非常庞大,你只要给出最后两位数字即可.

Input

每组输入的第一行是一个整数T,表示测试实例的个数,下面是T行数据,每行一个整数N(1<=N<2^64),当T=0时结束.

Output

对于每个测试实例,输出字符串个数的最后两位,每组输出后跟一个空行.

Sample Input

4
1
4
20
11
3
14
24
6
0

Sample Output

Case 1: 2
Case 2: 72
Case 3: 32
Case 4: 0

Case 1: 56
Case 2: 72
Case 3: 56

问题分析

比起以前做过的递推题,这一题算比较麻烦的了(当然,原因是我没有想到好的方法,如果你有更方便的方法,欢迎提供大家一起学习)。

如果没有任何条件限制,A、B、C、D组成长度为n的字符串,其个数应该为:4n。因为有了A、C需要出现偶数次的要求,就出现合法和不合法的不同分组。

在不合法的组里,又有

  1. A出现奇数次、C出现偶数次;
  2. C出现奇数次、A出现偶数次;
  3. A出现奇数次、C出现奇数次;

三种情况。我们用数组

  1. f[n][0]保存长度为n,合法的字符串的个数。
  2. f[n][1]保存长度为n,仅A出现奇数次的字符串的个数。
  3. f[n][2]保存长度为n,仅C出现奇数次的字符串的个数。
  4. f[n][3]保存长度为n,A、C出现奇数次的字符串的个数。
f[n][0]
长度为n-1的合法字符串在末尾加上一个B或者D,都可以变成长度为n的合法字符串。
长度为n-1的仅A出现奇数次的字符串再在末尾加上一个A,也可以变成合法字符串。
长度为n-1的仅C出现奇数次的字符串再在末尾加上一个C,也可以变成合法字符串。
所以,f[n][0] = 2 × f[n-1][0] + f[n-1][1] + f[n-1][2];
f[n][1]
长度为n-1的合法字符串在末尾加上A,都可以变成长度为n的仅A出现奇数次的字符串。
长度为n-1的仅A出现奇数次的字符串再在末尾加上一个B或者D,也可以变成仅A出现奇数次的字符串。
长度为n-1的A、C出现奇数次的字符串再在末尾加上一个C,也可以变成仅A出现奇数次的字符串。
所以,f[n][1] = 2 × f[n-1][1] + f[n-1][0] + f[n-1][3];
f[n][2]
长度为n-1的合法字符串在末尾加上C,都可以变成长度为n的仅C出现奇数次的字符串。
长度为n-1的仅C出现奇数次的字符串再在末尾加上一个B或者D,也可以变成仅C出现奇数次的字符串。
长度为n-1的A、C出现奇数次的字符串再在末尾加上一个A,也可以变成仅C出现奇数次的字符串。
所以,f[n][2] = 2 × f[n-1][2] + f[n-1][0] + f[n-1][3];
f[n][3]
长度为n-1的A、C出现奇数次的字符串在末尾加上一B或者D,都可以变成长度为n的A、C出现奇数次的字符串。
长度为n-1的仅A出现奇数次的字符串再在末尾加上一个C,也可以变成A、C出现奇数次的字符串。
长度为n-1的仅C出现奇数次的字符串再在末尾加上一个A,也可以变成A、C出现奇数次的字符串。
所以,f[n][3] = 2 × f[n-1][3] + f[n-1][1] + f[n-1][2];

综上所述,我们得到

f[n][0] = 2 × f[n-1][0] + f[n-1][1] + f[n-1][2]; ①
f[n][1] = 2 × f[n-1][1] + f[n-1][0] + f[n-1][3]; ②
f[n][2] = 2 × f[n-1][2] + f[n-1][0] + f[n-1][3]; ③
f[n][3] = 2 × f[n-1][3] + f[n-1][1] + f[n-1][2]; ④
f[1][0] = 2
f[1][1] = 1
f[1][2] = 1
f[1][3] = 0

发现f[1][1]f[1][2]初始状态相同,而且以后迭代方程也相同,所以f[n][1] = f[n][2]

又有f[n][0] + f[n][3] = f[n][1] + f[n][2]

∵f[n][0] + f[n][1] + f[n][2] + f[n][3] = 4n
∴f[n][0] + f[n][3] = f[n][1] + f[n][2] = 2 × 4n-1
∴f[n-1][1] + f[n-1][2] = 2 × 4n-2
∴f[n][0] = 2 × f[n-1][0] + f[n-1][1] + f[n-1][2] = 2 × f[n-1][0] + 2 × 4n-2

我们得到

f[n][0] = 2 × f[n-1][0] + 22n-3
f[n-1][0] = 2 × f[n-2][0] + 22n-5
f[n-m][0] = 2 × f[n-m-1][0] + 22n-2m-3
f[2][0] = 2 × f[1][0] + 21
f[1][0] = 2

开始一层层往下迭代

f[n][0]
 = 2 × f[n-1][0] + 22n-3
 = 22 × f[n-2][0] + 22n-4 + 22n-3
 ┋
 = 2m × f[n-m][0] + 22(n-m)-1+m-1 + ... + 22n-3
 = 2n-1 × f[1][0] + 2n-1 + 2n +... + 22n-3
f[1][0] = 2;

∴f[n][0] = 2n + 2n-1 + 2n-2 +... + 22n-3 = 22n-2 + 2n-1

算法实现

公式得到了:f(n) = 22n-2 + 2n-1

但就这样直接编程那是不可能实现的,因为n的范围1≤N<264,这样的范围是不能求出f(n)的。所以还得找其他规律。

因为题目只要求输出最后2位数,我们依次输出2的n的最后两位看看...

20 -> 1
21 -> 2
22 -> 4
23 -> 8
24 -> 16
25 -> 32
26 -> 64
27 -> 28
28 -> 56
29 -> 12
210 -> 24
211 -> 48
212 -> 96
213 -> 92
214 -> 84
215 -> 68
216 -> 36
217 -> 72
218 -> 44
219 -> 88
220 -> 76
221 -> 52
222 -> 4

到了222时,末尾2位又变成4,与22一样,这时候就进入了一个循环了(每20个一次循环)。所以,结果只能是这22个中的一个。只有n=0 和 n=1是需要特殊考虑的。其他n就等于2(n-2) % 20 + 2的值了。

参考源码

redraiment使用Emacs Lisp批量迁移《HDU 2060-2069》