问题描述
Problem Description
今年的ACM暑期集训队一共有18人,分为6支队伍。其中有一个叫做EOF的队伍,由04级的阿牛、XC以及05级的COY组成。在共同的集训生活中,大家建立了深厚的友谊,阿牛准备做点什么来纪念这段激情燃烧的岁月,想了一想,阿牛从家里拿来了一块上等的牛肉干,准备在上面刻下一个长度为n的只由"E" "O" "F"三种字符组成的字符串(可以只有其中一种或两种字符,但绝对不能有其他字符),阿牛同时禁止在串中出现O相邻的情况,他认为,"OO"看起来就像发怒的眼睛,效果不好。
你,NEW ACMer,EOF的崇拜者,能帮阿牛算一下一共有多少种满足要求的不同的字符串吗?
PS: 阿牛还有一个小秘密,就是准备把这个刻有 EOF的牛肉干,作为神秘礼物献给杭电五十周年校庆,可以想象,当校长接过这块牛肉干的时候该有多高兴!这里,请允许我代表杭电的ACMer向阿牛表示感谢!
再次感谢!
Input
输入数据包含多个测试实例,每个测试实例占一行,由一个整数n组成,(0<n<40)。
Output
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
Sample Input
1
2
Sample Output
3
8
问题分析
Problem Analyse
递推题
Algorithm Analyse
这一题比起其他题稍微高级一点,它需要两路同时进行梯推。
我们每次都在原来合法的字符串的最后面再加一个字符,让它仍然是合法的字符串。
这就会出现最后一个字符是O和不是O两种情况,把末尾是O的字符串的个数保存在D[I][0]
里,而不是O的保存在D[I][1]
里。
在原来的字符串上再加个O,让它依然合法,则原来的字符串末尾必须不为O,即D[n][0] = D[n-1][1]
而在原来的字符串上再加非O,则它对前面字符串的末尾没有要求,而且它还有E、F两种。因此D[n][1] = 2 * (D[n-1][0] + D[n-1][1])
初始D[1][0] = 1; D[1][1] = 2;